

References

¹ Lees, L. and Yang, H., "Rayleigh's problem at low Mach number according to the kinetic theory of gases," *J. Math. Phys.* **35**, 195-235 (October 1956).
² Grad, H., "On the kinetic theory of rarefied gases," *Communs. Pure Appl. Math.* **2**, 331-407 (1949).
³ Lees, L., "A kinetic description of rarefied gas flows," *Guggenheim Aeronaut. Lab., Calif. Inst. Tech. Hypersonic Research Project Memo. 51* (December 15, 1959).
⁴ Logan, J. G., "On the propagation of transverse disturbances in rarefied-gas flows," *J. Aerospace Sci.* **29**, 1011-1012 (1962).
⁵ Logan, J. G., "Propagation of thermal disturbances in rarefied gas flows," *AIAA J.* **1**, 699-700 (1963).

Unsymmetrical Buckling of Shallow Spherical Shells

NAI-CHIEN HUANG*

Harvard University, Cambridge, Mass.

THE numerical results for the critical pressure for unsymmetrical buckling of clamped, shallow, spherical shells recently were presented by Weinitzschke.¹ The author of the present note independently has obtained results for the same problem which are in striking disagreement with those of Weinitzschke. The governing differential equations used agree with those used by Weinitzschke. The buckling pressures were calculated numerically. The final results are shown in Fig. 1 together with some available experimental data.^{2, 3} The pressure parameter p is defined as the ratio of the external pressure q to the classical buckling pressure q_0 of the complete spherical shell of the same radius of curvature and thickness; n is the number of waves along the circumferential direction appearing in the buckling mode. The disagreement with Weinitzschke's results is displayed in Fig. 2, but the reason for this disagreement remains unknown.

According to the author's results, unsymmetrical buckling ($n \neq 0$) occurs only for $\lambda > 5.5$. For $\lambda < 5.5$, buckling occurs

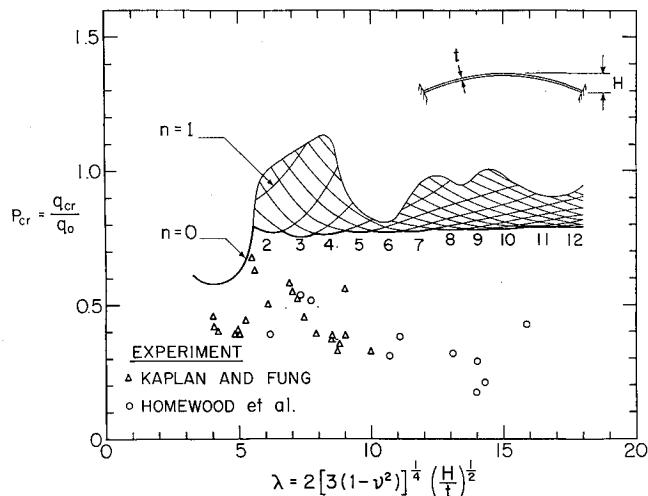


Fig. 1 Calculated buckling pressures of clamped, shallow, spherical shells and experimental results

Received by IAS November 29, 1962. The work was supported by the Office of Naval Research. The author wishes to acknowledge his indebtedness to B. Budiansky, who has given constant encouragement and valuable advice during the whole course of research.

* Research Assistant, Division of Engineering and Applied Physics.

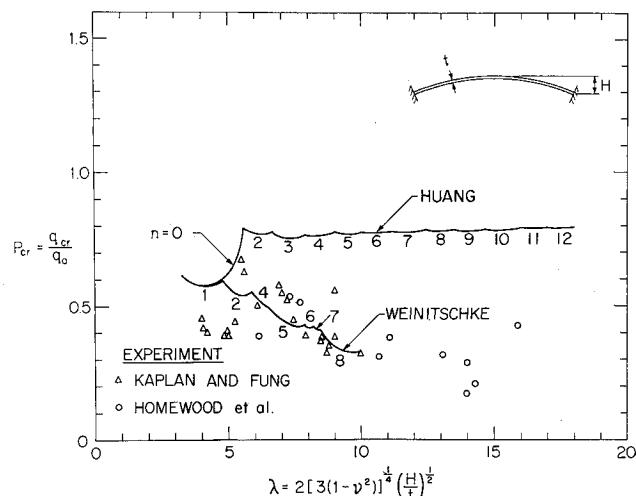


Fig. 2 Calculated buckling pressures vs Weinitzschke's results

by axisymmetrical snapping. As λ keeps increasing, the buckling mode shows more and more waves along the circumferential direction and also shows a distinct boundary layer near the edge of the shell along the radial direction when λ is high. An asymptotic value of the buckling pressure is found to be 0.864 when λ approaches infinity and the ratio of n/λ approaches 0.817. Initial imperfections of the shell are presumed to be the source of the discrepancy between theory and experiment.

References

¹ Weinitzschke, H. J., "The effect of asymmetric deformations on the buckling of shallow spherical shells," *J. Aerospace Sci.* **29**, 1141 (1962).
² Kaplan, A. and Fung, Y. C., "A nonlinear theory of bending and buckling of thin elastic shallow spherical shells," *NACA TN 3212* (August 1954).
³ Homewood, R. H., Brine, A. C., and Johnson, A. E., Jr., "Experimental investigation of the buckling instability of monocoque shells," *Proc. Soc. Exptl. Stress Anal.* **18**, 88 (1961).

On Axially Symmetric, Turbulent, Compressible Mixing in the Presence of Initial Boundary Layer

GDALIA KLEINSTEIN*

Polytechnic Institute of Brooklyn, Farmingdale, N. Y.

RECENT experimental results¹ have shown that the mixing of heterogeneous gases having an initial velocity ratio close to unity occurs faster than is predicted by classical eddy-viscosity theory. The theoretical analysis of two uniform streams of different gases but of nearly equal velocity, performed with the usual assumptions for eddy viscosity and Prandtl number equal to a constant,² shows that mixing will take place very slowly, i.e., at the rate corresponding to laminar diffusion. It has been suggested that the difference

Received by IAS November 29, 1962. This research was carried out under Contract No. AF 33(616)-7661, administered by the Aeronautical Research Laboratories, Office of Aerospace Research, U. S. Air Force, and is partially supported by the Ballistic Systems Division.

* Research Associate.